일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | ||||||
2 | 3 | 4 | 5 | 6 | 7 | 8 |
9 | 10 | 11 | 12 | 13 | 14 | 15 |
16 | 17 | 18 | 19 | 20 | 21 | 22 |
23 | 24 | 25 | 26 | 27 | 28 |
- AndroidStudio를활용한안드로이드프로그래밍
- Selenium
- jupyter
- 컴파일설치
- 수동설치
- 한빛미디어
- 가비아
- 셀레니움
- attention
- word2vec
- 딥러닝
- image
- 프로그램새내기를위한자바언어프로그래밍
- 논문리뷰
- MySQL
- 한빛아카데미
- Apache
- Crawling
- 밑바닥부터시작하는딥러닝2
- Lamp
- CBOW
- 소스설치
- 예제중심HTML&자바스크립트&CSS
- 비지도학습
- aws
- 생활코딩
- deeplearning
- 밑바닥부터시작하는딥러닝
- 크롤링
- 머신러닝
- Today
- Total
목록image (2)
안녕, 세상!
![](http://i1.daumcdn.net/thumb/C150x150/?fname=https://blog.kakaocdn.net/dn/beETGg/btrtQnT0CBl/Io1iTew9E1S83SQYEqKnc1/img.jpg)
Abstract EPSANet Novel lightweight and effective attention method Replacing the 3x3 convolution with the PSA module in the bottleneck blocks of the ResNet Be developed by stacking ResNet-style EPSA blocks Strong multi-scale representation ability for various computer vision tasks Outperforming most of the state-of-the-art channel attention methods Introduction Specifically two types of attention..
![](http://i1.daumcdn.net/thumb/C150x150/?fname=https://blog.kakaocdn.net/dn/cAnT0p/btrtoAmaeTX/OhRzcJleqknTdsBpkYml8K/img.png)
Abstract For underwater image classification Simulate the visual correlation of background attention with image understanding for special environments, such as fog and underwater by I-A module I-A moudule : Inception-Attention module Introduction Underwater image : Complex distortions (low contrast, blurring, non-uniform brightness...) Three key points 1) 서로 다른 환경들에서 찍힌 underwater images의 backgr..