일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | ||||||
2 | 3 | 4 | 5 | 6 | 7 | 8 |
9 | 10 | 11 | 12 | 13 | 14 | 15 |
16 | 17 | 18 | 19 | 20 | 21 | 22 |
23 | 24 | 25 | 26 | 27 | 28 | 29 |
30 | 31 |
- 한빛아카데미
- 셀레니움
- Selenium
- 컴파일설치
- Crawling
- 논문리뷰
- deeplearning
- word2vec
- image
- AndroidStudio를활용한안드로이드프로그래밍
- 프로그램새내기를위한자바언어프로그래밍
- 밑바닥부터시작하는딥러닝
- 밑바닥부터시작하는딥러닝2
- MySQL
- 크롤링
- Apache
- 예제중심HTML&자바스크립트&CSS
- 비지도학습
- 생활코딩
- jupyter
- 딥러닝
- attention
- Lamp
- 수동설치
- 한빛미디어
- CBOW
- 머신러닝
- 소스설치
- aws
- 가비아
- Today
- Total
목록image (2)
안녕, 세상!

Abstract EPSANet Novel lightweight and effective attention method Replacing the 3x3 convolution with the PSA module in the bottleneck blocks of the ResNet Be developed by stacking ResNet-style EPSA blocks Strong multi-scale representation ability for various computer vision tasks Outperforming most of the state-of-the-art channel attention methods Introduction Specifically two types of attention..

Abstract For underwater image classification Simulate the visual correlation of background attention with image understanding for special environments, such as fog and underwater by I-A module I-A moudule : Inception-Attention module Introduction Underwater image : Complex distortions (low contrast, blurring, non-uniform brightness...) Three key points 1) 서로 다른 환경들에서 찍힌 underwater images의 backgr..